
“Networking is IPC”: A Guiding Principle to a Better Internet∗
Networking is inter-process communication. —Robert Metcalfe, 1972

Position Paper

Technical Report BUCS-TR-2008-019

August 15, 2008

John Day‡ Ibrahim Matta† Karim Mattar†
‡Metropolitan College †College of Arts & Science

Computer Science, Boston University
{day, matta, kmattar}@bu.edu

ABSTRACT
This position paper outlines a new network architecture, i.e., a
style of construction that identifies the objects and how they re-
late. We do not specify particular protocol implementations or
specific interfaces and policies. After all, it should be possible
to change protocols in an architecture without changing the ar-
chitecture. Rather we outline the repeating patterns and struc-
tures, and how the proposed model would cope with the chal-
lenges faced by today’s Internet (and that of the future). Our new
architecture is based on the following principle:

Application processes communicate via a distributed inter-
process communication (IPC) facility. The application
processes that make up this facility provide a protocol
that implements an IPC mechanism, and a protocol for
managing distributed IPC (routing, security and other
management tasks).

Existing implementation strategies, algorithms, and protocols can
be cast and used within our proposed new structure.

1. INTRODUCTION
Today, the pure form of the Internet’s best-effort deliv-

ery model has not been able to effectively respond to new
requirements (e.g., security, quality-of-service, wireless, mo-
bility). Individual networks in the Internet today represent
commercial entities—Internet Service Providers (ISPs). An
ISP may be willing to provide better than best-effort service
to its customers or its peers for a price or to meet a Service
Level Agreement (SLA). The lack of a structured view of
how this could be accomplished has led to ad hoc solutions
and so-called “layer violations” where in-network elements
(e.g., routers, proxies, middleboxes) deeply inspect passing
datagrams so as to perform application- or transport-specific
processing.

We believe that time is ripe to revisit the original Inter-
net architecture to explicitly enable a richer internetworking
model that empowers ISPs and creates an organized market
structure.

∗This work has been partially supported by a number of Na-
tional Science Foundation grants, including CISE/CCF Award
#0820138, CISE/CSR Award #0720604, CISE/CNS Award
#0524477, CNS/ITR Award #0205294, and CISE/EIA RI
Award #0202067.

Our Contribution:
We propose a new architecture for building networks and
internets that has the following features:

1. It builds on a very basic premise, yet fresh perspec-
tive that networking is not a layered set of different
functions but rather a single layer of distributed Inter-
Process Communication (IPC) that repeats over differ-
ent scopes. Each instance of this repeating IPC layer
implements the same functions / mechanisms but poli-
cies are tuned to operate over different ranges of the
performance space (e.g., capacity, delay, loss).
Remark: By IPC, we mean the general model of com-
municating processes, and not a specific implementa-
tion.

2. It is based on a comprehensive theory of networking;
it does not represent another “fix”, patch, or point-
solution to a piece of the problem. We do not propose
to simply add a new “session” layer to perform some
extra functionality for bridging ISP networks. Instead
we take a clean slate approach and begin with a com-
prehensive general theory of IPC where the number of
IPC layers may vary at different parts of the Internet
depending on the range of the resource allocation prob-
lem that must be addressed. The greater the operating
range in a network, the more IPC layers it may have.
Thus configuring the appropriate number of IPC layers
allows for more predictable service to be delivered to
users.

3. This repeating structure scales indefinitely, thus it avoids
current problems of growing routing tables, and sup-
ports features such as multihoming and mobility, with
little or no cost.
Remark: By “indefinitely” we mean that the nature
of our proposed architecture does not impose any lim-
its. There may, of course, be physical limits and other
constraints.

4. An application process using this distributed IPC fa-
cility1 only knows the name of the destination appli-
cation process. It has no knowledge of addresses and
there are no so-called “well-known ports.” To join such
a distributed IPC facility, a new member must be au-
thenticated according to the policies of this particular

1We use the terms “IPC layer” and “Distributed IPC Facility
(DIF)” interchangeably.

1



facility. This yields a far more secure architecture.

5. Stacking IPC layers on top of each other allows net-
works to be built from smaller and more manageable
layers of limited scope. This divide-and-conquer strat-
egy gives providers more resource management options
than just over-provision. It also provides the basis for
operating subnetworks at much higher utilizations than
the 30%–40% in the current Internet.

6. The distributed IPC facility that we propose here, can
be configured to not only provide the fundamental ser-
vices of the traditional networking lower layers but also
the services of application relaying (e.g., mail distribu-
tion and similar services), transaction processing, and
peer-to-peer. This removes the barrier created by the
Transport Layer in the current Internet, opening po-
tential new markets for ISPs to provide IPC services
directly to their customers leveraging their expertise in
resource management of lower layers.

7. Perhaps most surprising, it turns out that private net-
works (with private addresses) are the norm—IPC pro-
cesses are identified by addresses internal to the dis-
tributed IPC facility—and public networks are simply
a degenerate case of a private network. This lays the
foundation for major competition and innovation and
avoids the tyranny of the current Internet structure.

What This Paper is (Not) About:
This position paper outlines a new network architecture,
i.e., a style of construction that identifies the objects and
how they relate. We do not specify particular protocol im-
plementations or specific interfaces and policies. After all,
it should be possible to change protocols in an architec-
ture without changing the architecture. Rather we outline
the repeating patterns and structures, and how the proposed
model would cope with the challenges faced by today’s In-
ternet (and that of the future). Existing implementation
strategies, algorithms, and protocols can be cast and used
within our proposed new structure.

2. BACK TO BASICS: NETWORKING IS
DISTRIBUTED IPC AND ONLY IPC
We all became familiar with the “layered” reference

model of ISO OSI as well as the layered TCP/IP architec-
ture. In these models, a layer is said to provide a “service” to
the layer immediately above it. For example, the transport
layer provides “virtual” end-to-end channels to the applica-
tion layer, and the internetworking layer provides the trans-
port layer with “physical” packet delivery across individual
networks making up the Internet.

What’s wrong with this layered model? As Robert Met-
calfe’s quote in the paper’s subtitle indicates, we have always
known that IPC was the core of the problem, but we some-
how missed what it could tell us. Both the transport and
internetworking tasks together constitute an IPC service to
application processes. Let us call this an Internet-wide IPC
service. Now, to implement such a service over individual
ISP networks, one needs a similar ISP-wide IPC service over
each ISP network. In other words, we need to repeat such
an IPC service over different regions/scopes. Of course, an
ISP, in turn, may manage its own network (perhaps large-
scale and/or with a significant all-wireless component) by
implementing IPC layers of narrower scope over a number
of its own components.

We note that we are aware that “recursion” has been
recently promoted in network architectures, but to the best
of our knowledge, this has been limited to tentative pro-
posals of repeated functions of existing layers, and how one
may either reduce duplication or create a “meta”-function
(e.g., error and flow control) that could be re-used in many
layers, e.g. Touch et al. (2006) [19]. Independently, we have
pursued a general theory to identify patterns in network ar-
chitecture [5] (1996). This proposal is based on this different
direction [6]:

Application processes communicate via a distributed
IPC facility. The application processes that make
up this facility provide a protocol that implements
an IPC mechanism, and a protocol for managing
distributed IPC (routing, security and other man-
agement tasks).

We need to view what repeats, as an IPC service, which
combines transport (flow-based quality-of-service), routing
(multiplexing/relaying), and other management functions.
This enables each ISP (at any level, small or large) to sell its
IPC-based services to others, thus promoting competition
and an organized market-driven Internet.

3. PROPOSED IPC-BASED NETWORK
ARCHITECTURE

3.1 Elements of a Two-System Scenario

EFCP

IAP

EFCP

IPC
Manager

Application 
Process

Port ID

Application
Protocol

Mux

RIEP

Dir

EFCP

IAP

EFCP

IPC
Manager

Application 
Process

Port ID

IPC
Process 

(Subsystem)

Application
Protocol

Mux

RIEP

Dir

Distributed
IPC Facility 
(IPC Layer)

Physical Link

RIB RIB

Host 1 Host 2

Figure 1: One layer of IPC consisting of hosts with
user applications and IPC subsystems.

Figure 1 shows the elements of an IPC facility required
for communication between two application processes in two
hosts that are directly connected by a physical link. The ap-
plication protocol part of the application processes establish
communication using an IPC interface. This IPC interface
allows the source application process to name the destina-
tion application process and specify desired properties for
the communication. Application names should be location
independent, and unlike existing IPC interfaces (notably the
sockets interface), applications never see addresses. The job
of the IPC facility is to:

• locate the destination application process using its name,
• if found2, establish the communication channel and allo-

cate resources required to meet the desired properties3,
2if the destination application is found but is not available, the
IPC facility could start it.
3Resources could be allocated in many different ways, including
best-effort, DiffServ or IntServ [1, 15,18].

2



• return unique port IDs to the application processes to
use to send/receive data over the allocated channel, and
to release the channel when done.

Remark: Unlike existing IPC interfaces, it is not necessary
to overload port IDs with application-name semantics. Here
a port ID is simply a local, dynamically assigned, identifier
that identifies one end of a channel/connection at the layer
boundary.

To accomplish its job, the IPC facility needs mecha-
nisms to support the following functions:

• an IPC manager to manage the various functions (dis-
cussed below) needed to establish and maintain connec-
tions,
• a Resource Information Exchange Protocol (RIEP) to

populate a Resource Information Base (RIB) with ap-
plication names, addresses, and performance capabili-
ties, used by various DIF coordination tasks, such as
routing, connection management, etc.,
• an Error and Flow Control Protocol (EFCP) to support

requested channel properties during data transfer,
• a multiplexing task to efficiently use (schedule) the un-

derlying IPC facility (communication medium) that is
shared among several connections.

How is this Distributed IPC Facility (IPC layer) differ-
ent from the traditional definition of a layer?

• First, the proposed IPC layer does not perform a single
function or a small subset of pre-determined functions,
but a coordinated set of functions to achieve the desired
IPC service.
• Second, the proposed IPC layer naturally separates var-

ious concerns, including operation over different timescales
(e.g., short-term data transfer and multiplexing vs. long-
term connection management and access control issues).

3.2 Elements of a Multi-System Scenario

Application 
Process

Port ID

Application
Protocol

Application 
Process

Port ID

Application
Protocol

IPC
Process

IPC
Process

IPC
Process

IPC
Process

IPC
Process

IPC
Process

IPC
Process

Relaying
Application

Mux Mux

RAMP
instances

Host 1 Host 2

Relaying
Element

Physical Link Physical Link

Figure 2: Two IPC layers consisting of hosts with
user applications and IPC subsystems.

Figure 2 shows the elements of an IPC facility in the
general case when dedicated systems (such as routers) are
used to scale communication among a large number of hosts.
In this figure, two hosts are connected via a router. There
are two levels of IPC layers: two bottom IPC layers (DIFs),
one tailored to each physical link, and one higher-level IPC
layer that provides communication between the application
processes through the router. The higher-level IPC pro-
cesses communicate using the services provided by the bot-
tom IPC layers.

In general, any system that has multiple interfaces would
have a separate IPC process (with its own multiplexing task)

for each interface—each one of these IPC processes would
implement policies that are appropriate to its associated
interface. Furthermore, to manage the multiple IPC pro-
cesses, a multi-interface system would have a higher-level
IPC process that performs not only multiplexing but also a
relaying function. Thus, to manage the IPC channel through
a multi-interface system (e.g., a router), a relaying-and-
multiplexing task would be required to forward messages
toward their destination.

How is this two-layer IPC model different from the tra-
ditional transport-IP-interface model?

• First, relaying applications in dedicated systems need
to be named so an IPC process can specify the name of
the next system/node along the path toward the des-
tination application process. Given the name of the
next multi-interface (multi-homed) node, the underly-
ing (lower) IPC layer could then choose one of the mul-
tiple paths arriving at each one of its interfaces. Notice
that the difficulty of the current Internet architecture
to support multihoming is resolved by simply keeping
the distinction between IPC facilities clear.
• Second, the relaying processes in the dedicated systems,

as well as the multiplexing processes in end-hosts, are
all members of the same distributed IPC facility. This
IPC facility integrates both transport and routing tasks,
along with other management tasks. Thus an IPC fa-
cility is capable of fully supporting flow-based perfor-
mance requirements if so desired4. The current Inter-
net architecture suffers from the complete separation of
transport (flow and error control) tasks and multiplex-
ing/routing tasks into separate layers, thus misses op-
portunities for sharing conditions the two sets of tasks
are observing.
• Third, an interesting consequence of our model is that

since the communicating elements are application pro-
cesses, they have application names. Hence, we see that
application names are external names, while addresses
(of multiplexing and relaying IPC processes) are inter-
nal identifiers used by the members of the DIF to facil-
itate coordination among themselves. Hence there is no
reason for an address to ever be visible outside its DIF.
• Fourth, as noted earlier, to become a member of a dis-

tributed IPC facility, an IPC process in our proposed ar-
chitecture needs to explicitly enroll, i.e., authenticated
and assigned an address. The current state of affairs
employs ad hoc procedures for enrollment that do not
naturally fit within the current Internet architecture.

We discuss all the features of our proposed architecture
in more detail in Section 6.

4. REPEATING IPC LAYERS
To summarize our proposed IPC model so far, we are

fundamentally concerned with application processes com-
municating via a distributed IPC facility. Since the IPC
layers repeat, the IPC processes within an IPC facility are
in turn the application processes requesting service from the
IPC layer below. In other words, the IPC facility is it-
self composed of application processes in different systems,
whose coordinated behavior creates a distributed applica-
tion for allocating IPC resources. The IPC layers repeat
until the IPC facility is tailored to the physical medium.
4By the term “flow” we mean an aggregated stream of messages
that have been multiplexed at the edges of the IPC facility.

3



Each IPC process consists of three distinct sets of tasks
dealing with IPC aspects at different timescales. These task
sets are loosely coupled through an information base and
per-flow state:

• an IPC Data Transfer, which supports multiplexing
(scheduling) and relaying (forwarding), and per-flow data
transfer,
• an IPC Transfer Control, which implements EFCP

and controls the per-flow data transfer parameters,
• an IPC Management, which implements RIEP to query

and update a Resource Information Base for routing, se-
curity, resource management, address assignment, and
so on.

An IPC layer has a rank (its position relative to other
layers) and a scope (the collection of IPC processes that
make up the IPC facility). As rank decreases, scope tends
to decrease and hence the IPC facility could be more tightly
managed as more control can be exerted over its resources.
We have all observed that specific policies are only effec-
tive over a limited range (e.g., closed-loop control is more
effective/stable for shorter feedback loops). As the Internet
has grown we have tried to accommodate an increasingly
wider range of the resource allocation problem with one set
of policies in one layer (notably the Internet Layer). In our
proposed architecture, the IPC layers (DIFs) can be applied
to different ranges of the problem, effectively by a divide-
and-conquer approach.

Figure 3 shows a repeated instantiation of IPC layers,
where bottom IPC layers are tailored to the physical me-
dia, including wireless links. Higher IPC layers are built
on top of lower layers, for example a higher-level DIF is
configured over (and tailored to) the bottom wireless DIFs.
This figure illustrates how an underlying channel between
two hosts could be more effectively managed by repeating /
adding an extra IPC layer whose range is relatively narrower
and thus policies appropriate to that range’s characteristics
(e.g., capacity, delay, loss) could be associated with the var-
ious multiplexing, relaying, error control, flow control, and
management mechanisms.

In terms of today’s roles of network elements, systems
directly connected to the end-hosts in Figure 3 act as “bor-
der” (“access”) routers, whereas the middle system acts as
an “interior” router. It is important to note that we are
not necessarily advocating more “layers” than what we have
today, but we are viewing layers as IPC facilities which net-
work elements explicitly become members of.

Wireless Links

2nd level DIF tailored to 
wireless component

1st level DIF tailored to 
wireless medium

3rd level host-to-host DIF

Figure 3: Layers of IPC consisting of hosts with
user applications and IPC subsystems. More IPC
levels exert more control over part of the host-to-
host connection.

To summarize, our proposed IPC layers are not so
much isolating different functions, like existing ar-
chitectures, as they are supporting different ranges
of the resource-allocation problem.

5. OPERATION OF A DISTRIBUTED
IPC FACILITY (DIF)

5.1 Creating a New DIF
To create a new distributed IPC facility at rank N ,

(N)-DIF, a higher-level (network management) application
could create an initial IPC process and connect it to one or
more (N-1)-DIFs. This initial IPC process could then be
directed to initiate enrollment with other IPC processes or
simply wait for other IPC processes to join it (as described
next).

5.2 Adding a New Member to a DIF
For a new IPC process, x, to join an existing (N)-DIF,

x has to be connected to the (N)-DIF by an underlying (N-
1)-DIF. Furthermore, like any other application, x has to
know the name of the (N)-DIF or the name of some member
of it, say y, but not the address. x attempts to establish
a connection to y. Once this connection is established, y
authenticates x. If the authentication is successful, y assigns
x an (N)-address, and x becomes a member of the (N)-DIF.
Remark: This is not creating a connection-oriented archi-
tecture. This connection is purely for purposes of enroll-
ment. It has no effect on the nature of forwarding decisions.
It is no more connection-oriented than having a cable be-
tween two routers makes the router connection-oriented.

5.3 Transferring Data within a DIF
As described earlier, a distributed IPC facility provides

an application process with an interface to establish a con-
nection to a destination application process. Unlike the cur-
rent Internet architecture, which looks up a name in DNS
and returns the result to the requester, here, once an ad-
dress has been found, the request continues to the identified
IPC process to ensure that the application is really there
and that the requester has access to it. This is analogous to
what IPC in a single system does and here it has many ad-
ditional benefits as well, such as access control, handling an
application that has moved, imposing resource constraints,
etc.

A B

B1

B2

path1

path2

Point-of-Attachment

(N)-DIF

(N-1)-DIF

Figure 4: Two-step routing process.

Routing within an (N)-DIF is done over a graph of IPC
processes that are members of this IPC facility. A routing
path toward a destination (N)-IPC process is specified by
the internal addresses of the (N)-IPC processes along the
path.5 To facilitate routing, we would want to route over
a topology that is perhaps more stable than the, typically
time-varying, graph of IPC processes. To that end, inter-
nal addresses should be topological (location-dependent)—a
number of topological addressing approaches have been pro-
posed, e.g. [12].

Figure 4 illustrates the routing process from an (N)-IPC
process A to its next-hop (neighbor) B along the path to the
destination using the services provided by the underlying
5How paths are chosen is a matter of policy.

4



(N-1)-DIF. When the (N-1)-DIF relays the message to B,
the (N-1)-DIF maps the process name of B to an (N-1)-IPC
process name (or (N-1)-address), B1 or B2, that corresponds
to the specific path within the underlying (N-1)-DIF.
Remark: Unlike the current Internet architecture, the IPC
architecture is relative. The (N-1)-address is internal to the
(N-1)-DIF and is considered a “point-of-attachment” (PoA)
address for the (N)-DIF.

6. FEATURES OF OUR ARCHITECTURE
Contrary to other proposals where many aspects re-

quire specific mechanisms to accomplish specific capabili-
ties, in this proposal many capabilities are accommodated
without specific mechanisms but as a consequence of the
structure. As one would expect in a complete architecture,
so-called middleboxes are unnecessary, and so-called “layer
violations” do not exist.

6.1 Security
In our proposed model, applications never see addresses,

which are private to the underlying IPC facility. Thus, the
IPC facility is impervious to attacks from outside the facility.
This is contrary to the vulnerability of the current Internet
infrastructure to attacks by hosts, because its IP addresses
are made public.

Of course management applications are the exception
in our architecture, as they themselves authenticate and as-
sign those “internal” addresses to other IPC processes when
they join the distributed IPC facility (and could revoke these
addresses if malicious behavior is detected). Moreover, dif-
ferent authentication policies could be employed within each
facility, thus providing a range of security levels from public
(as in the current Internet) to private.

In addition, the kludge of firewalls to create security
domains is avoided in our architecture. In our model, fire-
walling is a natural function of a border router, where there
is a repetition of the DIF structure.

6.2 Manageability
As noted earlier and illustrated in Figure 3, our IPC

model would support better control over resources by re-
peating the IPC layer over smaller scopes/regions. Nowa-
days, ad hoc proxy-based techniques have been deployed to
improve performance over wireless or long-fat pipes. In our
model, proxying is a natural function of a border router,
where there is a repetition of the DIF structure.

To overcome the crippling effect of the traditional lay-
ered model that isolates transport functions from multiplex-
ing, relaying and routing functions, so-called “cross-layer”
approaches have been proposed. Our model integrates all
IPC tasks into one layer and communication between IPC
processes enables service negotiation. We are already find-
ing that commonality across layers has a simplifying effect
on manageability.

6.3 Multihoming
Multihoming (i.e., having more than one connection to

the network) has been challenging to support within the
current Internet architecture because the Internet has an in-
complete naming and addressing architecture (see Saltzer’s
work [14])—the IP address names the interface rather than
the node itself (the IPC process in our model).

To address this naming/addressing problem, many ad
hoc techniques have been proposed. For example, SCTP [17]
supports the ability to change the IP address (of a host in-
terface) without disrupting the transport connection. How-

ever, there is no easy way for SCTP to know that a host
interface has failed so it could initiate a switch to another
interface nor it is its job to do so as this requires SCTP to
do at least degenerate routing. This is again because of the
strict layered model that isolates transport from routing.

In our IPC model, the naming of IPC processes names
nodes by necessity. Routing in the (N)-DIF is then naturally
in terms of (N)-addresses. Interface names are (N-1)-IPC
process names. As pointed out, this relation is relative.
An (N)-IPC process may have access to more than one (N-
1)-DIF (interface), and more than one (N-1)-DIF may be
directly connected to the same adjacent (N)-IPC process.
In other words, there may be more than one path to the
next hop. Multihoming is solved by simply recognizing that
building the forwarding table is a two-step process of picking
the next hop and then selecting the path to the next hop
(cf. Figure 4).

The late binding from the (N)-address to the (N-1)-
address (or (N)-PoA address), and the narrower scope of
the underlying (N-1)-DIF make mechanisms for re-routing
through a different path toward a multi-homed node much
more scalable.

6.4 Mobility
With the expected proliferation of a number of com-

peting wireless access subnets (e.g., urban WiFi, cellular
WiMAX), the future Internet should be able to intrinsi-
cally handle mobility. Mobility has been a challenge for the
current Internet architecture because again, it only names
interfaces and not the nodes themselves. For example, in
the Mobile-IP solution [2], the IP address of the mobile is
treated as a “special” case by the home and foreign routers
which themselves constitute two single points of failure.

We note that mobility is simply dynamic multihoming,
whether to different base stations, switches, or different sub-
nets. In a sense, mobility is dynamic multihoming with
controlled “link failures”, i.e., as a wireless signal becomes
weak, the link “fails”.

Figure 5 illustrates the mobility of a host M from right
to left. The host belongs to multiple DIFs of different rank,
i.e., the host has multiple node addresses. As a mobile host
moves, it joins new DIFs and drops its participation in old
ones. For example, by moving from one subnet to another,
a node at the (N)-layer changes its PoA or its (N-1)-address,
but its (N)-address may not change if the movement is local.
In general, PoA addresses change more frequently in DIFs
of lower rank (smaller scope).

As the figure shows, a movement of host M within the
scope of the right (N-1)-DIF results in a local routing update
at the (N-1)-process A since M ’s (N-2)-address changes.
Further movement to the left (N-1)-DIF results in a routing
update at the higher (N)-process B since M ’s (N-1)-address
changes.

A

B

(N-2)-DIF

(N-1)-DIF

(N)-DIF

MMM

Figure 5: As a mobile host moves, it joins new DIFs
and drops its participation in old ones.

As noted earlier, our IPC model would effectively sup-

5



port multihoming, thus it would also support mobility. This
mobility support requires the cooperation of nearby ISPs
(DIFs) to re-route messages to the mobile node, but occurs
naturally as a consequence of routing updates within a nar-
row scope.

6.5 Scalability
Given the repeating nature of our IPC model, where

each IPC facility has its own private internal addresses /
identifiers, and with management policies that constrain the
membership size of each IPC facility, we expect much better
address scalability compared to that of the current Internet.
The kludge of Network Address Translation boxes (NATs)
is avoided in our architecture. In our model, NATing is a
natural function of a border router, where there is a repeti-
tion of the DIF structure. None of the problems NATs cause
in the Internet exist in our model, even though private ad-
dresses are the norm, because there is a complete addressing
architecture.

In addition, as discussed above, the narrower scope of
topology changes and late binding from node name (address)
to PoA address (interface) make our architecture much more
scalable in terms of routing overhead.

6.6 A Competitive Marketplace
The layered best-effort architecture adopted by the In-

ternet does relegate ISPs to a commodity business as providers
of mere connectivity. The Transport Layer (notably TCP)
effectively seals ISPs off in the lower layers with IP providing
a best-effort service. The connectionless model of IP makes
over-provisioning the only effective response to providing
better service, makes any differentiation nearly impossible
and leaves ISPs squeezed between the application/content
(host) providers and the equipment vendors with little room
to maneuver. This does not contribute to a healthy market.

Our proposed IPC model would promote a healthy mar-
ketplace by getting ISPs into the business of IPC services.
While the distributed IPC layers can be used by ISPs to bet-
ter manage resource allocation in their networks, the same
functions appear in what are now called application relay-
ing (e.g., email), transaction handling (e.g., checkpointing
and two-phase commit), peer-to-peer, etc. This allows ISPs
to expand into what has traditionally been a purely host
service, leveraging their knowledge of resource allocation in
the layers below.

However, these higher-value IPC services will not be
exclusive to ISPs, so they are faced with competition from
host service providers competing in the same space. It is
also possible for a host service provider to create its own
DIF from the ground up, and thus manage the lower layers
of its own network! The providers’ only monopoly is as it is
with everyone else, only in the systems they own.

6.7 Adoptability
An IPC facility in our model is merely a private net-

work. In this model, the current Internet is simply a spe-
cific private layer with very weak requirements for joining it.
Consider the Internet as an example of a vast e-mall. Other
e-malls are possible with other characteristics such as tighter
security for joining, perhaps specialized to certain market
segments. For example, MySpace or Facebook could be con-
sidered boutique e-malls in contrast to the mega-malls like
the Internet. There is no public network or address space
that one must belong to, no single network one must always
be attached to. A user could be part of any network by
choice. In one’s network, an IPC service provider is in con-

trol of everything including the addresses. Networks have
considerable flexibility in how they provide their services.
This would encourage alliances among groups of providers
with complementary interests to provide advanced services
in competition with groups of other providers.

7. RELATED WORK
The addressing architecture in our proposed IPC model

is inspired by Jerry Saltzer’s work on Naming and Binding of
Objects (1978) [13]. Although, in this work, Saltzer does not
consider computer networks, he noted the important con-
cepts of program name, its logical (virtual memory) address,
and its physical (memory) address. John Shoch in 1978
[16] noted three distinct concepts in computer networks:
location-independent names (“what we seek”); location-
dependent names (“where it is”); and routes (“how to get
there”). In 1982, Saltzer [14] revisited his naming and ad-
dressing concepts for computer networks. Saltzer noted
four levels, not three: services and users, nodes, network
attachments, and paths. So he recognized that the same
node may change its attachment to the network, and the
node address should be independent of that. Saltzer identi-
fies mappings from service name to node name, from node
name to PoA, then from PoA to path. At that time, Saltzer
lumped the last two mappings into one routing step and did
not clearly distinguish between node name (address) and
its point-of-attachment, understandably as it was rare to
have multiple paths (links) to the next-hop node along the
route. In our model, routing is a two-step process: a route
is first determined as a sequence of node addresses, then
to reach the next-hop (i.e., next node address) along the
route, one has to choose a path, possibly out of many possi-
ble paths (points of attachment), toward the next-hop node.
The PoA address is in turn a node address in the underly-
ing IPC layer. Although some recent work on the so-called
location/identifier split [7] attempted to address this long-
standing naming/addressing problem, we believe the new
model we are proposing naturally and cleanly solves this
problem by adopting (and expanding) Saltzer’s approach
and generalizing it in the context of the repeating IPC model.

Dave Clark et al. [4] have noted the tussles among com-
peting players in the public Internet. We identified the fea-
tures of our IPC model that promote a healthy and compet-
itive marketplace. Our IPC model is also compatible with
the Integrated Layer Processing (ILP) engineering princi-
ple [3] in that it allows different DIFs to span different
scopes, while “increasing the range of implementation op-
tions available” within each DIF.

8. ONGOING AND FUTURE WORK
We are currently specifying the complete operation of

a distributed IPC layer, along with the various mechanisms
and interfaces that are needed to support a variety of policies
over different scopes.

By separating mechanisms from policies, as well as sep-
arating concerns over different timescales (packet-level vs.
connection-level vs. management), we can enable users to
specify (and the community to contribute) IPC policies declar-
atively within our IPC framework, as we have recently done
in [11] for transport policies.

In [11], we used the P2 system [10] which supports spec-
ifications that are executable. Thus changes could be more
easily made and correct behavior could be continually ver-
ified. Another form of specification we are investigating is
ASN.1 [9] (or a modified form of it), which would allow us to

6



decouple abstract syntaxes from the implementation. The
implementation will leverage the Click framework [8].

We also plan to develop performance and economic mod-
els to evaluate our proposed architecture and compare it to
today’s architecture as well as newly proposed ones.

9. REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and

W. Weiss. An Architecture for Differentiated Services. Internet
RFC 2475, December 1998.

[2] Ed. C. Perkins. IP Mobility Support for IPv4. Internet RFC
3344, August 2002.

[3] D. Clark and D. Tennenhouse. Architectural Considerations for
a New Generation of Protocols. SIGCOMM Comput. Commun.
Rev., 20(4):200–208, 1990.

[4] D. Clark, J. Wroslawski, K. Sollins, and R. Braden. Tussle in
Cyberspace: Defining Tomorrow’s Internet. In ACM
SIGCOMM, pages 347–356, Pittsburgh, Pennsylvania, 2002.

[5] J. Day. Patterns in Network Architecture I, II, III. Presentation
Slides, SC6 in Seoul Korea, NIST, BBN, November 1996.

[6] J. Day. Patterns in Network Architecture: A Return to
Fundamentals. Prentice Hall, 2008.

[7] D. Farinacci, V. Fuller, D. Oran, and D. Meyer. Locator/ID
Separation Protocol (LISP). Internet Draft, November 2007.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek.
The Click Modular Router. ACM Transactions on Computer
Systems, 18(3):263–297, 2000.

[9] J. Larmouth. ASN.1 complete. Morgan Kaufmann, 1999.
[10] B. Loo, T. Condie, M. Garofalakis, D. Gay, J. Hellerstein,

P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica.
Declarative Networking: Language, Execution and
Optimization. In ACM SIGMOD, pages 97–108, 2006.

[11] K. Mattar, I. Matta, J. Day, V. Ishakian, and G. Gursun.
Declarative Transport: No more transport protocols to design,
only policies to specify. Technical Report BUCS-TR-2008-014,
CS Dept, Boston U., July 12 2008.

[12] M. O’Dell. GSE - An Alternate Addressing Architecture for
IPv6. Internet Draft, 1997.

[13] J. Saltzer. Naming and Binding of Objects. In R. Bayer, editor,
Operating Systems, Lecture notes in Computer Science,
volume 60. Springer-Verlag, New York, 1978.

[14] J. Saltzer. On the Naming and Binding of Network Destinations.
In International Symposium on Local Computer Networks, pages
311–317, April 1982.

[15] S. Shenker, R. Braden, and D. Clark. Integrated Services in the
Internet Architecture: an Overview. Internet RFC 1633, June
1994.

[16] J. Shoch. Inter-Network Naming, Addressing, and Routing. In
IEEE Conference on Computer Communication Networks,
pages 72–79, Washington DC, 1978.

[17] R. Stewart and C. Metz. SCTP: New Transport Protocol for
TCP/IP. IEEE Internet Computing, 05(6):64–69, 2001.

[18] I. Stoica and H. Zhang. Providing Guaranteed Services Without
Per Flow management. In ACM SIGCOMM, 1999.

[19] J. Touch, Y-S. Wang, and V. Pingali. A Recursive Network
Architecture. Technical report, USC/ISI, October 2006.

7


